

Distributor Bid Package Training

AutoTight

Continuous Rod Tie-Down Systems

Automatic Tie-Down System Design

When we are supplied a set of drawings we usually supply the following:

<u>Part I Project Bid</u> includes a detailed package that specifies all required materials.

Page 1. Project Information Sheet includes defined items such as Code, Elongation limits, and Shrinkage. Linked items drive the engineering on subsequent pages. Input comes directly from plans and specifications as supplied by the EOR and/or directly off the most current plans.

Page 2. Load Justification Table (LJT) lists each run and allowable loads per plans. Input includes: Run Name, # of runs and Tension loads per floor. Optional input is wood compression load,

If elongation limits (Indicated by a color change on the offending item) the designer may manually change rod diameter, material, plate size and shrinkage compensator. Everything else is automatic.

Page 3. Detail LJT Explanation defines materials, capacities and elongation limits for each run.

Page 4. Holdown System Materials lists required materials by run.

Page 5. System Material is the complete list for all materials for the job.

Page 5a. System Turn-Key Pricing. Distributor Use only

Page 6 Run drawing typical. (Sometimes not supplied.)

<u>Part II Engineering</u> is stamped submittal package ready for EOR, and city review.

The Engineering package supplies a single page of calculations for each run. The first page provides an example. Each subsequent page is for a single run. Depending on the job these are supplied stamped by our engineer ready for a review and acceptance by the EOR or may be generated by the EOR and stamped. This project supplies four pages of calculations.

Holdown Run Details AT 10 are supplied on a C or D size drawing. Supplied drawings are stamped, ready for submittal. This is available ready to modify if the EOR desires.

Holdown Run Elevations AT 11 lists all required runs with each specified item.

Embedment Details AT12 details concrete embedment starts .These are commonly called "Shop Drawings"

Project Information

1.Bid Date: *	2/2/11	2.Pr	oject ID#	75-19846	3.Re	evision #:	0	4.Ta	keoff By:	ME	5.Runs:	81	
6.Project: *	The Sample	e Project				7.Distribu	utor:						
Address:	960B Guard	d Street				Contact:							
City, ST, ZIP:	Friday Harb	or, WA 9825	0			Address:							
9.Est. Start Date				11.#of Bldgs	1	City, ST,	ZIP:						
10.Plan Set*	Bid Set			12.Plan Date	11/29/10	Phone:				Cell:			
						Fax:							
Building / Site						e-mail:							
Than Notes.						13.Sh	ip to City	, ST, ZIP:					
15.Engineer Firm:	AutoTight D	Designer				16.Contra	actor:						
EOR/Contact:						Contact:							
Address:	P.O. Box 33	338				Address:							
Suite/Unit:	Suite 2					Suite/Uni	it:						
City, ST, ZIP:	Friday Harbo	r, Wa 98250				City, ST,	ZIP:						
Phone:	360-378-94	184	Cell:			Phone:				Cell:			
Fax:			•			Fax:							
e-mail:		e-mail:											
Stru	uctural Hold	down Syster	m Inform	ation		18.Comp	lete CAT	System	Yes	21.Detail OK	22.DWG #	23.Detail/Note	
19.Design Code: *	IBC_2009			State of WA Building Code						\checkmark	S.1	Include Drawing Date	
25.Reqd Loads per:	Schedule	11/29/2010	<- Incluc	le Drawing D	Date					\checkmark	S5.6	Include Drawing Date	
30.Take-Up Device	at Each Leve	el	Yes	Add'l									
31.Est. Wood Shrink	kage*, in/flo	or	1/4	Run									
32.Elongation Betwee	n Connection	(in.)	0.200	Notes									
33.Run Termination	Type*	Top Pl	ate Termi	nation 34.Wood Beam Starts			Yes	35.S	teel Beam	Starts	Yes		
Threaded	Rod / Coupl	ers	Wood Sp	specifications			Ne assume)		44.Detail OK	45.DWG #	46.Detail/Note	
36.Standard Rod Type	e	A307	40.Shear	rwall Plates* DFL					\checkmark	S.2			
37.High Strength Ro	od Type	C1045	41.Studs	per Plans	DFL					\checkmark	S.2		
38. Higher Strength	Rod Type	A193-B7	42.Post p	er Plans	DFL #1					\checkmark	S.2		
39.Extra High Stren	gth Rod	A354-BD	43.Floor	Joist*	11 7/8" 1	L'I				\checkmark	S2.3		
Story Heights	(Carpet to C	Carpet):	Wal	l Plates	Joist+Floo	or Plywood	Comp Po	st Height	48.Elev.	\checkmark	A1.2		
51.Floor/Level*	52.ft.*	53.in. *	Sill (in.)	Top (in.)	Between	in.	ft.	in.		49.Addition	al Wood N	otes:	
6th	10	0	1 1/2	3			9	7 1/2					
5th	10	0	1 1/2	3	4 & 5	12 5/8	8	6 7/8					
4th	10	0	1 1/2	3	3 & 4	12 5/8	8	6 7/8					
3rd	10	0	1 1/2	3	2&3	12 5/8	8	6 7/8					
2nd	10	0	2 1/2	3	1 & 2	12 5/8	8	5 7/8					
Ancho	r Rod Embe	edments		55.CAT E	mbeds	No	56.Origina	al Plan Emb	ed Details	\checkmark	S5.6		
Embed Type	57.P	T Deck		58.Foc	oting		59.	Wall					
Depth/Width in	60.Th	60.Thickness 61.					62.V	Vidth					
63.Concrete PSI										Anchor Bolt Above Slab			
64.Hot Dipped Galvanized (HDG) Rod Required No				No	65.Em	bedment	Chairs Su	pplied		+	6	inches	
No	on-CAT Syst	tem Embedr	ment Rod	Size, Threa	ad Pitch a	and Mate	rial Type	must be	Verified	Before Or	dering		
66.Additional Embed	d Notes:												

Commins Manufacturing, Inc., © 2011

AutoTight® Load Justification Table

The Sample Project Friday Harbor, WA 98250

Run count:

81

PROJECT ID #:

75-19846

P.O. Box 3338
Suite 2
Friday Harbor, Wa 98250
360-378-9484

Structural Engineer:

AutoTight Designer

201.Elongation Components System Stretch

Run	ſ		5A				5B				:	3A			1ASE	3S		Ì		
Count	I		64				8					5			4					
CAT Run Type			CAT-5 (T	54321)			CAT-5 (T	54321)			CAT	·3 (T31)			CAT-1	(T1)				
Tension =	Т	Required	Allowable	Differential	Stretch	Story	Heights	Cumlative												
Compression =	С	Loads	Load (k)	Load (k)	Load (k)	Loads	Load (k)	Load (k)	Load (k)	Loads	Load (k)	Load (k)	Load (k)	Loads	Load (k)	Load (k)	Load (k)	(Ca	rpet to	Est. Wood
Floor / Level		per level	Rod	AT	System (in)	per level	Rod	AT	System (in)	per level	Rod	AT	System (in)	per level	Rod	AT	System (in)	Ca	rpet)	Shrinkage
TIOOT / EGVOI		(kips)	Ø - Type	Plate	Limit (in)	(kips)	Ø - Type	Plate	Limit (in)	(kips)	Ø - Type	Plate	Limit (in)	(kips)	Ø - Type	Plate	Limit (in)	ft	in	Total (in.)
	Т	5.10	6.90	5.10	5.10	6.50	6.90	6.50	6.50											
6th			R5A307	AT6A-1.5	0.133		R5A307	AT6A-1.5	0.163									10	0	1 1/4
	С		5/8"-A307	S5	0.200		5/8"-A307	S5G6	0.200											
	Т	5.90	6.90	0.80	5.90	10.75	13.53	4.25	10.75											
5th			R5A307	AT6A-1.5	0.117		R7A307	AT 100	0.134									10	0	1
	С		5/8"-A307	S4	0.200		7/8"-A307	S5G8	0.200											
	т	6.80	6.90	0.90	6.80	10.90	13.53	0.15	10.90	4.50	9.94	8.50	8.50							
4th			R5A307	AT6A-1.5	0.134		R7A307	AT 100	0.101		R6A307	AT6A-1.5	0.241					10	0	3/4
	С		5/8"-A307	S4	0.200		7/8"-A307	S5G8	0.200		3/4"-A307	S10	0.200							
	Т	7.50	9.94	0.70	7.50	16.00	17.67	5.10	16.00	8.50	9.94			8.20	9.94	8.20	8.20			
3rd			R6A307	AT6A-1.5	0.100		R8A307	AT 100	0.154	*	R6A307				R6A307	AT6A-1.5	0.139	10	0	1/2
	С		3/4"-A307	S4	0.200		1 "-A307	S5G8	0.200		3/4"-A307				3/4"-A307	S8	0.200			
	Т	9.20	9.94	1.70	9.20	27.80	46.59	11.80	27.80	16.00	17.67	7.50	16.00			Stl Beam				
2nd			R6A307	AT6A-1.5	0.132		R9B7	AT 125	0.197		R8A307	AT 100	0.159					10	0	1/4
	С		3/4"-A307	S4	0.200		1 1/8"-B7	S12L	0.200		1 "-A307	S7	0.200							
Anchor Rod			3/4"-A307	Reset Run			1 1/8"-B7	Reset Run			1 "-A307	Reset Run				Reset Run				

Design Code(s): IBC_2009 State of WA B

DWG: S.1 Date: Include Drawing Date

Required Loads: Schedule

DWG: S5.6 Date: Include Drawing Date

Take-Up Devices AT75, AT100 and AT125 provide for 1.1" shrinkage, AT75-2.5 provides for 2.5" of shrinkage.

0

See Commins ICC-ESR-1344 and COLA RR 25480 for additional information.

S8 Bearing Plate shown by color and size (Plates Marked)

Plates with "S" Prefix fit 3-1/2" wall number signifies allowable load in kips and have 3/4" or 1" clearance holes.

Plates with "L" Preffix fit 5-1/2" wall and have a 1-1/4" Clearance hole for use with the AT125.

Plates with "L" Suffix have a 1-1/4" Clearance hole for use with the AT125.

Tension Load reflects the maximum capacity of the specified rod.

Differential Load is the load transferred into the building at that load transfer point.

Runs modified by combining runs and skipping floors. Subject to EOR acceptance.

Rod Elogation (Stretch) Calculations;

{Required Load (lbs.) per level for Rod x Stretch Length (in.)} / {Tensile Diameter (in.) of Rod x 29,000,000 (Young's Modulus)}

Stretch Length is the distance between a Termination Point, Anchor / Beam Start / Top Floor Termination and/or Differential Point.

System stretch includes Delta R. (the contribution due to reversal of direction of force applied to system)

Tie down systems now have an elongation limit or 0.180 for rod only and 0.200 fro the tie down system and 0.250 for the tie down system plus the top plate.

The note "Call Commins" in a cell means the load or another parameter exceeds standard capabilities.

Please call the factory at 360-378-9484 for solutions to extreme conditions.

Date: 2/2/11

Rev# 0

By:

ME

Load Justification Table Explained

- The Load Justification Table is the heart of the Transparent Tie-Down Designer. There is an abundance of information per floor and per run. (see sample below)
- Rod, Plates, Compensators, and Stretch Limits may be changed to suit your needs.
- It instantly recalculates and changes affected loads and components if you customize the run.
- This is just one run, it can handle up to 25 runs!

CAT Holdown System Materials - All Levels

Project:	The Samp	le Project		Run #	5A	5B	3A	1ASBS	Run Totals
Project ID #:	75-19846			Stories	5	5	3	1	
Buyer:				Runs	64	8	5	4	81
Contact:				6					
Phone:				5	R5A307	R5A307			1 standard AT
Fax:				4	R5A307	R7A307			2.5" expansion AT
Distributor:				3	R5A307	R7A307	R6A307		2 Stacked AT's
Salesmen:				2	R6A307	R8A307	R6A307	R6A307	
Phone:				1	R6A307	R9B7	R8A307	11071001	Quantities
		Items		Run #	54	5B	34	145BS	Itom
Part #		Description		Null #	34	Items	oer run	IAODO	Total
Auto Take-Up Devi	ces	Description							Total
AT 100	25.3k	(Pallet = 576)	1 1"		1	3	1		29
AT 125	34.5k	(Pallet = 320)	1.1"			1			8
AT6A-1.5	13.579k	(Pallet = 320)	1.5"		5	1	1	1	337
Bearing Plates		(************							
S4	4.1k	3/16 x 2½ x 2½	3/4"		4				256
S5	5.9k	0.229" (1/4") x 3" x 3"	3/4"		1				64
S5G6	5.9k	0.229" (1/4") x 3" x 3"	3/4"			1			8
S5G8	5.7k	0.229" (1/4") x 3" x 3"	1"			3			24
S7	7.8k	3/8 x 3½ x 3½	1"				1		5
S8	8.2k	3/8 x 3¼ x 4	1"					1	4
S10	10.3k	1/2 x 3¼ x 5	1"				1		5
S12L	12.0k	5/8 x 3¼ x 6	1¼"			1			8
Steel Beam Weld F	Plates								
EP-7A		5/8" x 3" x 3"						1	4
Ihreaded Rods					r .		r	-	
R5A307 x 10'		5/8" - 11 NC - A307			3	1			200
R6A307 x 1'		3/4" - 10 NC - A307			0		0	1	4
R6A307 x 10		3/4" - 10 NC - A307			2	2	2	1	142
R7A307 X 10		7/8 - 9 NC - A307				2			16
ROA3U7 X 10		1 - 0 NC - A307				1	1		0
R0A307 X 12 R0B7 x 12'		1 1/8" - 7 NC - B7				1	1		3
Sighted Coupling	Nuts	1 1/0 - 7 110 - 67			<u> </u>	<u> </u>	l		0
CN-5		5/8" - 11 NC			2				128
CN-6		3/4" - 10 NC			2		1	1	137
CN-7		7/8" - 9 NC				1			8
CN-8		1" - 8 NC					1		5
CNHS-9		1 1/8" - 7 NC				1			8
Coupling Nut Redu	icers								
CNR-56		5/8" - 3/4"			1				64
CNR-57		5/8" - 7/8"				1			8
CNR-68		3/4" - 1 "				1	1		5
CNR-70 CNR-89		<u> </u>				1			0 8
Nuts		1 1 1/0				<u> </u>	I		
N-5		5/8" - 11 NC			3	1			200
N-6		3/4" - 10 NC			2		1	1	137
N-7		7/8" - 9 NC				2			16
N-8		1" - 8 NC				1	1		13
NHS-9		1 1/8" - 7 NC				1			8
Washers									
W-5		5/8" SAE Flat			3	1			200
W-6		3/4" SAE Flat			2		1	1	137
VV-7		7/8" SAE Flat				2			16
vv-0 W/-9		1 3AE FIAT				1	1		13 8
Engineering					I		I	l	0
ENG RB-		Runs Built			1				1
CAT Holdown Syst	em Mater	ials Total:							

Copyright 2001-2011 Commins Manufacturing Inc.

		www.comminsmfg.com	
	CAT Hol	down System Mate	erial
	Comp	lete CAT Holdown System	
	(Em	bedments Not Included)	
Dato	2/2/11]	
By	2/2/11 MF	-	
Rev #	0	-	
Duilding	n Droisot:		Distributor
Building	g Project:		Distributor:
The San	npie Project	8	
Friday F	arbor, wa 9825	0	
Auto To	ha Ha Daviasa		CAT ID # 75-19846
	Ke-Up Devices	Auto Take-Up Device 1 in 11" sh	rinkage
- 23	AT 100 AT 125	Auto Take-Up Device, 1 in., 1.1" sh	rinkage
337	AT6A-1.5	Aluminum Auto Take-Up Device, 3	8/4 in.,1.5" shrinkage
Bearing	Plates		
256	S4	Bearing Plate, 3/16 x 21/2 x 21/2, 3/4	" hole
64	S5	Bearing Plate, 0.229" (1/4") x 3" x	3", 3/4" hole
8	S5G6	Bearing Plate, 0.229" (1/4") x 3" x	3", 3/4" hole
<u>4</u> 5	S7	Bearing Plate $3/8 \times 3\frac{1}{4} \times 3\frac{1}{4}$	ole
4	S8	Bearing Plate, 3/8 x 3 ¹ / ₄ x 4, 1" hol	e
5	S10	Bearing Plate, 1/2 x 31/4 x 5, 1" hol	e
8	S12L	Bearing Plate, 5/8 x 3¼ x 6, 1¼" h	ole
Steel Be	am Weld Plates		
4 Threedo	EP-7A	Steel Beam Start Plate, 5/8" x 3" x	3"
Inreade	BEA207 x 10	Threaded Red 5/8" 11 NC A20	Standard Rod Finish Black
200	R6A307 x 1'	Threaded Rod, 3/4" - 10 NC - A30	7 x 10, Black
142	R6A307 x 10'	Threaded Rod, 3/4" - 10 NC - A30	7 x 10', Black
16	R7A307 x 10'	Threaded Rod, 7/8" - 9 NC - A307	x 10', Black
8	R8A307 x 10'	Threaded Rod, 1" - 8 NC - A307 x	10', Black
5	R8A307 x 12'	Threaded Rod, 1" - 8 NC - A307 x	12', Black
Sighted	Coupling Nuts	Threaded Rod, T 1/8 - 7 NC - B7	X 12, DIACK
128	CN-5	Sighted Coupler Nut. 5/8" - 11 NC	. Grade 2
137	CN-6	Sighted Coupler Nut, 3/4" - 10 NC	, Grade 2
8	CN-7	Sighted Coupler Nut, 7/8" - 9 NC,	Grade 2
5	CN-8	Sighted Coupler Nut, 1" - 8 NC, G	rade 2
8 Couplin	CNHS-9	Signted Coupler Nut, 1 1/8" - 7 NC	, Grade 8
64	CNR-56	Coupler Nut Reducers 5/8" - 3/4"	Grade 2
8	CNR-57	Coupler Nut Reducers, 5/8" - 7/8"	. Grade 2
5	CNR-68	Coupler Nut Reducers, 3/4" - 1 ",	Grade 2
8	CNR-78	Coupler Nut Reducers, 7/8" - 1", 0	Grade 2
8	CNR-89	Coupler Nut Reducers, 1" - 1 1/8"	, Grade 2
Nuts	NC		
200	N-5 N-6	Nut, 5/8" - 11 NC , Grade 2	
16	N-7	Nut. 7/8" - 9 NC . Grade 2	
13	N-8	Nut, 1" - 8 NC , Grade 2	
8	NHS-9	Nut, 1 1/8" - 7 NC , Grade 8	
Washer	S		
200	VV-5	Washer, 5/8" SAE Flat	
137	W-7	Washer, 3/4 SAE Flat	
13	W-8	Washer, 1" SAE Flat	
8	W-9	Washer, 1 1/8" SAE Flat	
Enginee	ering		
ENG RB-	Runs Built		
CAT Ho	oldown System M	Aaterials Total:	

www.comminsmfg.com

				1		Date	2/1/11
	loldo	wn System F	Pricing			Rev #	0
Co	omplete	CAT Holdown Syst	em			Ву	ME
((Embedn	nents Not Included	ł)				
Distributor:				General Cont	ractor:		
The Sample Pro	oiect				CAT ID) #	75-19846
Run #	Qtv	CAT Run Type	Holdown Rod.	RX = (X/8")	\$/ea. Run**		Comments
5A	64	CAT-5 (T54321)	R5A307,R6A307,	()	\$ 129.25		
5B	8	CAT-5 (T54321)	R5A307,R7A307,R	8A307,R9B7	\$ 278.69		
3A	5	CAT-3 (T321)	R5A307,R6A307,R	8A307	\$ 107.40		
1ASBS	4	CAT-1 (T1)	R6A307		\$ 31.52	St	teel Beam Start
	1						
							AT 75
							AT 75-2.5
						29	AT 100
	01	Total Buna				8	AT 125
	01	Total Runs					ΔΤ4Α-1.5
						342	AT6A-1.5
						042	AT6A-2.5
				Total Take	-Up Devices:	379	
Based on	Plan Set:	Bid Set				Dated:	11/29/10
1- Bid Package is base	ed on the ir	formation shown. Distri	butor shall be responsit	ble for the review a	and approval of th	he Bid Pa	ackage.
2- Revised or updated be supplied to the D	drawings v Distributor fo	will be reviewed for chain or review and approval.	nges to the holdown sys	tem. If changes to	the System are	required	a new Bid Package will
3- All changes or reque	est for addi	tional System product,	not included in bid pack	age, must be requ	ested through th	e Distribu	utor and a new bid
package will be issu	ied to the d	listributor for review and	approval.		-		
4- Commins Manufacto	uring, Inc. i	s not responsible for los	s or damaged System	products after deliv	very to the job sit	te.	
5- Any changes by the \$100/bour and will b	Distributor	r, Buyer or Engineer of I	Record that requires add	ditional engineerin	g for the System	will be c	harged at a rate of
The Estimate and	Conditio	ons of the Estimat	e are valid for 30 D	avs. to -		March	3. 2011
Product must also	o be shir	oped within 60 day	s of estimate, ship	ned by -		April 2	2. 2011
Complete CAT Ho	Idown S	vstem(Embedmen	ts Not Included)				\$ 12,173,42
Shop Drawings ar	nd Engin	eering	,				Included
Single Ship	ment to:						\$ 658.80
Custom Rod Cut	Charge						\$ -
Marketing Discou	nt (10%)						\$ (1,217.34)
Estimated Sales T	Tax ,						Not Included
				CAT Hol	down Systen	n Total:	\$ 11,614.88
							\$ -
** Cost per each Rur	n does not	include Engineering	and Shipping Charge	S		C	ONFIDENTIAL
By:	ME					Date	2/1/2011

AutoTight Holdown System

www.comminsmfg.com Commins Manufacturing, Inc. 960B Guard Street, Friday Harbor, WA 98250 F: 360.378.9485 T: 360.378.9484

Run 5A: 5-Story 3/4" A307; 5/8" A307

The Sample Project

Run 5A 64 Runs

Wood	Tension	Differential	Compression
Floor/Level	Load Spec	Load Spec	Load Spec
5th Floor	5.1	5.1	per Plan
4th Floor	5.9	.8	per Plan
3rd Floor	6.8	.9	per Plan
2nd Floor	7.5	.7	per Plan
1st Floor	9.2	1.7	per Plan
Lample aleasu	un ten lateran		

Loads shown in kips

Notes.

- Drawing is not—to—scale. Run specifications including holdown 1. 2. hardware and compression wood, are per building codes and specifications of the project plans.
- 3. Compression Post/Studs are in addition to framing studs (U.N.O.) Common Post/Stud sizes are shown. Other sizes may be appropriate. Consult factory

Rev#	Ву	Date
0	MC	12.10.10

Holdown Hardware

System Design for The Sample Project

Prepared for AutoTight Designer

Input by Tom Boydston

Commins Project ID # 75-19846

Includes ICC ES 1344 Code Report, applicable catalog pages and COLA Report RR25480 as a separate PDF file: "AutoTight Materials and Reference.pdf".

www.comminsmfg.com

(1) Key to Calculation Table

					(2)	(3)		(4))	
AutoTight® Syster	m Run D	esign Ca	alc Sheet:		Example Project	Rev 0	Date 06/21	1/2010		
Project Number:	(6)				· · ·		CAT ID #	10-0001	Í	(5
Run Name:	1		Run Qty:	4		Te	nsile Stren	gth	Calc'd	
	(7)			(9)						
			(8)		(10)	(11)	(12)	(13)	(14)	_
Run Speci	fications		Comp	onent	Description	Capacity	Demand	D/C	Elong.	
Required	Loads:		Commins	AutoTight		(kips)	(kips)	Ratio	(in.)	
Level =	= 2		Comp	onent	Description	Capacity	Demand	D/C	Elong.	
Differential Load	: 4.00) (kips)	AT	125	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.10	0.50	45.5%	-	(2
Tension Load	: 20.00) (kips)	AT	125	Shrinkage Device (1-1/4" I.D.) - Allowable Load	34.50	4.00	11.6%	-	(2
Compression	: 20.00) (kips)	-		Shrinkage Device - Deflection at Load	-	-	-	0.002	(2
Story Height	: 12.50) (ft.)	-		Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002	(2
Plate Height	: 11.33	3 (ft.)	S8	3L	Bearing Plate at Reaction Point	7.96	4.00	50.2%	0.020	(2
Floor Depth	: 14.00) (in.)	R	9	1-1/8"-A307 Tension Rod	22.37	20.00	89.4%	0.125	(2
			-		No Stretch Rod	#N/A	20.00	0.0%	n/a	(2
			-		Wood Beam Start Bearing Plate	n/a	n/a	0.00	n/a	(2
			-		Steel Beam Start in Tension	n/a	n/a	0.00	n/a	(3
				Limiti	ing Component Tension Load Capacity, Load and D/C Ratio	22.37	20.00	89.4%	-	(3
			Maxir	num Allo	wed Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	74.5%	0.149	(3
Compression	Outer	(1) 4x8	(1) 4x8	Inner	4x Wall Post per Side of Rod-Enter by Hand as Needed	32.08	20.00	62.3%	-	(3
Wood	Posts	(3) 2x6	(3) 2x6	Posts	6x Wall Post per Side of Rod-Enter by Hand as Needed	30.93	20.00	64.7%	-	(3
Level =	= Footing	J	Comp	onent	Description	Capacity	Demand	D/C	Elong.	
Tension Load	: 20.00) (kips)	R	9	1-1/8"-A307 Anchor Rod	22.37	20.00	89.4%	n/a	(35)
	•	· · · ·	•		•	•	•			

Notes:

- (1) All these cells are filled with data from the AutoTight Run Designer spreadsheet's Project Info page and Load Justification Table page
- (2) The Builder's Name of the project.
- (3) The revision level of the plan set.
- (4) The Bid Date
- (5) The Commins Mfg. project number.
- (6) The Builder's number for the project.
- (7) The name of this run.
- (8) Commins AutoTight part number.
- (9) The quantity of this type of run.
- (10) This column is the description of the component shown on each row
- (11) This column of the table is the Load Capacities of the various components.
- (12) This column of the table is the Load placed on the various components.
- (13) This column of the table is the Demand / Capacity ratio for each component.
- (14) This column is the contribution of each componenent to the total elongation for this level, and the total elongation for the level. Elongation numbers are in blue text.
- (15) The name of this level.
- (16) Differential Load applied by this level.
- (17) Total tension in rod at this level
- (18) Compression load on the compression posts at this level.
- (19) Story Height carpet to carpet.
- (20) Plate to plate height of this level.
- (21) Depth of floor beams.
- (22) This row compares the total shrinkage at this level with the capacity of the AT's to take up this shrinkage.
- (23) This row compares the load capacity of the AT device to the load applied to it. Per AC316 Sec. 1.4.5
- $(24) \quad \mbox{This row shows the deflection of the AT device(s) under the applied load. Per AC316 Sec. 1.4.8$
- (25) This row shows the ΔR =Travel and Seating increment of the AT Device(s). Per AC316 Sec. 1.4.7
- (26) This row shows Bearing Plate Load Capacity and compares to its Load also its deflection's contribution to the total Elongation.
- (unless the calcs call for rod stretch only.) (It sees only the differential load.) Per AF&PA NDS Tbl 4A, 4B incl Cf factor.
- (27) This row shows Tension Rod Load Capacity and compares to its Load, also its deflection's contribution to the total Elongation. Per AISC 360-05
- (28) This row shows Stretch Rod Load Capacity and compares to its Load, also its deflection's contribution to the total Elongation. Only if Stretch Rod is used.
- (29) This row shows the Wood Beam Start's Bearing Plate Load Capacity and compares to its Load, also its deflection's contribution to the total Elongation.
- (Only if a Wood Beam Start is used.) (It sees the tension load.) Per AF&PA-NDS Tbl 4A, 4B incl Cf factor.
- (30) This row shows the Steel Beam Start's Load Capacity and compares to its Load, also its deflection's contribution to the total Elongation. (Only if a Steel Beam Start is used.) (It sees the tension load.) The rod seats on the steel beam and the weld cross section is greater than the rod cross section so the Steel Beam Start elongation is included in rod elongation. Per ICC ES-1344 & 5889
- (31) This row shows worst case component's Load and compares to its Load Capacity.
- (32) This row shows the maximum allowed Elongation and the total Elongation calculated for this level.
- (33) This row shows the inner and outer compression post required, their load capacities and loads if the wall is 4x. It is used only if Commins Mfg specifies the Compression Posts and is filled in manually. If line is not shown posting is per structural drawing.
- (34) This row shows the inner and outer compression post required, their load capacities and loads if the wall is 6x.
- It is used only if Commins Mfg specifies the Compression Posts and is filled in manually. If line is not shown posting is per structural drawing.
- (35) This row shows the load capacity of the Anchor Rod embedded in the concrete and compares to its load, if used. (Not the concrete strength)
- (36) Anchor bolt elongation is included in the length of the tension rods.
- (37) Nuts, Coupler Nuts and Reducing Coupler Nuts are not listed individually because they are grade compatible with the Tension Rod.
- (38) Nuts, Coupler Nuts and Reducing Coupler Nuts calculated contribution to elongation is 0.0005 inch or less.

www.comminsmfg.com

AutoTight® System Run Design Calc. Sheet for:

The Sample Project

Date 12/10/2010 Rov 0

тм

Auto rigino Oysten	in Run Design O		<i>.</i>	The Sample Project	Nev U	Date 12/10	0/2010	
Project Number:						CAT ID #	75-1984	6
Run Name:	5A	Run Qty:	64		Te	nsile Stren	gth	Calc'd
Run Specif	fications	Compo	nent	Description	Capacity	Demand	D/C	Elong.
Required	Loads:	Commins A	AutoTight		(kips)	(kips)	Ratio	(in.)
Level =	6th	Compo	nent	Description	Capacity	Demand	D/C	Elong.
Differential Load:	5.10 (kips)	AT6A-	-1.5	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.50"	1.25"	83.3%	
Tension Load:	5.10 (kips)	AT6A-	-1.5	Shrinkage Device - 1.5" (3/4" I.D.) - Allowable Load	13.58	5.10	37.6%	-
Compression:	5.10 (kips)	-		Shrinkage Device - Deflection at Load	-	-	-	0.005
Story Height:	10.00 (ft.)	-		Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	10.00 (ft.)	S5		Bearing Plate at Reaction Point	5.96	5.10	85.5%	0.034
		R5A3	807	5/8"-A307 Tension Rod	6.90	5.10	73.9%	0.093
			Limiti	ng Component Tension Load Capacity, Load and D/C Ratio	5.96	5.10	85.5%	-
		Maxim	um Allov	ved Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	67.4%	0.135
Level =	5th	Compo	nent	Description	Capacity	Demand	D/C	Elong.
Differential Load:	0.80 (kips)	AT6A-	-1.5	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.50"	1.00"	66.7%	
Tension Load:	5.90 (kips)	AT6A-	-1.5	Shrinkage Device - 1.5" (3/4" I.D.) - Allowable Load	13.58	0.80	5.9%	-
Compression:	5.90 (kips)	-		Shrinkage Device - Deflection at Load	-	-	-	0.001
Story Height:	10.00 (ft.)	-		Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	8.95 (ft.)	S4		Bearing Plate at Reaction Point	4.12	0.80	19.4%	0.008
Floor Depth:	12.63 (in.)	R5A3	807	5/8"-A307 Tension Rod	6.90	5.90	85.5%	0.108
			Limiti	ng Component Tension Load Capacity, Load and D/C Ratio	6.90	5.90	85.5%	-
		Maxim	um Allov	ved Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	59.3%	0.119
	1th	Compo	nont	Description	Canaaitu	Domond	D/C	Flong
Differential Loads	4(n	Compo		Description		Demand	D/C	Elong.
Dillerential Load.	0.90 (kips)	ATCA	1.5	Shinikage at Level, Shinikage Device travel & D/C Ratio (III.)	12.59	0.75	50.0%	-
Compression:	0.00 (Kips)	AT0A-	-1.5	Shinikage Device - 1.5 (3/4 1.D.) - Allowable Load	13.30	0.90	0.0%	-
Compression.	10.00 (KIPS)	-		Shinikage Device - Dellection at Load	-	-	-	0.001
Blate Height:	9.05 (ft.)	-		Similikage Device - Travel and Sealing Increment ΔR	-	-	-	0.002
Flate Reight.	12.63 (it.)	04	07	Evening Plate at Reaction Point	4.12	0.90	21.0%	0.009
	12.00 (11.)	KJAJ	Limiti	ng Component Tension Load Capacity Load and D/C Patio	6.00	6.00	90.0%	0.125
		Maxim		wed Level Elongation D/C Ratio and Total Level Elongation	0.90	0.00	90.0%	0 136
					0.200		001170	0.100
Level =	3rd	Compo	nent	Description	Capacity	Demand	D/C	Elong.
Differential Load:	0.70 (kips)	AI6A-	-1.5	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.50"	0.50"	33.3%	-
Tension Load:	7.50 (kips)	AI6A-	-1.5	Shrinkage Device - 1.5" (3/4" I.D.) - Allowable Load	13.58	0.70	5.2%	-
Compression:	7.50 (KIPS)	-		Shrinkage Device - Deflection at Load	-	-	-	0.001
Story Height:	10.00 (ft.)	-		Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Flate Reight.	0.95 (ft.)	54	07	Bearing Plate at Reaction Point	4.12	0.70	17.0%	0.002
	12.03 (IN.)	ROAS	1	3/4 -A307 Tension Rod	9.94	7.50	/5.5%	0.093
		Maxim		rig component rension Load capacity, Load and D/C Ratio	9.94	7.50	/3.3%	- 0.008
		Maxim		ved Level Llongation, D/O Natio and Total Level Llongation	0.200	_	40.070	0.030
Level =	2nd	Compo	nent	Description	Capacity	Demand	D/C	Elong.
Differential Load:	1.70 (kips)	AI6A-	-1.5	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.50"	0.25"	16.7%	-
I ension Load:	9.20 (kips)	A16A-	-1.5	Shrinkage Device - 1.5" (3/4" I.D.) - Allowable Load	13.58	1.70	12.5%	-
Compression:	9.20 (Kips)			Shrinkage Device - Deflection at Load	-	-	-	0.002
Story Height:	10.00 (ft.)	-		Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	8.95 (ft.)	S4	07	Bearing Plate at Reaction Point	4.12	1.70	41.3%	0.01/
Floor Depth:	וא געידו (IU)	R6A3	507	3/4"-A307 Tension Rod	9.94	9.20	92.6%	0.114
			Limiti	ng Component Tension Load Capacity, Load and D/C Ratio	9.94	9.20	92.6%	-
		Maxim		ved Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	67.0%	0.134
Level =	Footing	Compo	nent	Description	Capacity	Demand	D/C	Elong.
Tension Load:	9.20 (kips)	R6A3	307	3/4"-A307 Anchor Rod	9.94	9.20	92.6%	n/a

Base Design Code: Steel Stess Increase: Takeup Device at Each Level: Elongation Limit Required: Elongation Limit per Connection: Elongation Components: Shrinkage:

- IBC_2009/2009 per the State and Local jurisdiction
- No
- Yes
- Yes

0.200 (inch) between load reaction points (Typical Range 0.125 to 0.200)

System Stretch

0.250 inch per floor (Typical Range 0.250 to 0.500) DFL

Shearwall Plates Wood Species:

Douglas Fir-Larch

Shearwall Plates Wood Strength: 625 psi

www.comminsmfg.com

AutoTight® System Run Design Calc. Sheet for:

The Sample Project

Rev 0 Date 12/10/2010

TM

• •	•						
Project Number:					CAT ID #	75-1984	6
Run Name:	5B	Run Qty: 8		Те	nsile Stren	gth	Calc'd
Run Specif	ications	Component	Description	Capacity	Demand	D/C	Elong.
Required	Loads:	Commins AutoTight	·	(kips)	(kips)	Ratio	(in.)
Level =	6th	Component	Description	Capacity	Demand	D/C	Elong.
Differential Load:	6.50 (kips)	AT6A-1.5	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.50"	1.25"	83.3%	
Tension Load:	6.50 (kips)	AT6A-1.5	Shrinkage Device - 1.5" (3/4" I.D.) - Allowable Load	13.58	6.50	47.9%	-
Compression:	6.50 (kips)	-	Shrinkage Device - Deflection at Load	-	-	-	0.007
Story Height:	10.00 (ft.)	-	Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	10.00 (ft.)	S6	Bearing Plate at Reaction Point	7.00	6.50	92.8%	0.037
		R5A307	5/8"-A307 Tension Rod	6.90	6.50	94.2%	0.119
		Limitir	ng Component Tension Load Capacity, Load and D/C Ratio	6.90	6.50	94.2%	-
		Maximum Allow	red Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	82.4%	0.165
Level =	5th	Component	Description	Canacity	Demand	D/C	Flong
Differential Load:	4 25 (kins)		Shrinkage at Level Shrinkage Device travel & D/C Ratio (in)	1 10"	1 00"	90.9%	Liong.
Tension Load:	10.75 (kips)	AT 100	Shrinkage Device (1" D) - Allowable I gad	25 30	4 25	16.8%	
Compression:	10.75 (kips)	-	Shrinkage Device - Deflection at Load	-			0.005
Story Height:	10.00 (ft)	_	Shrinkage Device - Travel and Seating Increment AR	-	-	-	0.002
Plate Height:	8.95 (ft.)	58	Bearing Plate at Reaction Point	8 28	4 25	51.3%	0.002
Floor Depth:	12.63 (in)	R7A307	7/8"-A307 Tension Rod	13.53	10.75	79.5%	0.021
	()	l imitir	or Component Tension Load Canacity Load and D/C Ratio	13 53	10.75	79.5%	-
		Maximum Allow	ed Level Elongation. D/C Ratio and Total Level Elongation	0.200	-	62.1%	0.124
				a		5/0	
Level =	4th	Component	Description	Capacity	Demand	D/C	Elong.
Differential Load:	0.15 (kips)	AT 100	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.10"	0.75"	68.2%	-
Tension Load:	10.90 (kips)	AT 100	Shrinkage Device (1" I.D.) - Allowable Load	25.30	0.15	0.6%	-
Compression:	10.90 (kips)	-	Shrinkage Device - Deflection at Load	-	-	-	0.000
Story Height:	10.00 (ft.)	-	Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	8.95 (ft.)	58	Bearing Plate at Reaction Point	8.28	0.15	1.8%	0.001
FIOOI Deptil.	12.03 (IN.)	R/A307	7/8"-A307 Tension Rod	13.53	10.90	80.6%	0.098
		Limitir Meximum Alley	ig component Tension Load Capacity, Load and D/C Ratio	13.53	10.90	80.6%	-
			ed Level Elongation, D/C Katlo and Total Level Elongation	0.200	-	30.3%	0.101
Level =	3rd	Component	Description	Capacity	Demand	D/C	Elong.
Differential Load:	5.10 (kips)	AT 100	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.10"	0.50"	45.5%	-
Tension Load:	16.00 (kips)	AT 100	Shrinkage Device (1" I.D.) - Allowable Load	25.30	5.10	20.2%	-
Compression:	16.00 (kips)	-	Shrinkage Device - Deflection at Load	-	-	-	0.006
Story Height:	10.00 (ft.)	-	Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	8.95 (ft.)	S8	Bearing Plate at Reaction Point	8.28	5.10	61.6%	0.002
Floor Depth:	12.63 (in.)	R7B7	7/8"-B7 Tension Rod	28.19	16.00	56.8%	0.143
		Limitir	ng Component Tension Load Capacity, Load and D/C Ratio	8.28	5.10	61.6%	-
			ed Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	76.9%	0.154
Level =	2nd	Component	Description	Capacity	Demand	D/C	Elong.
Differential Load:	11.80 (kips)	AT 125	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.10"	0.25"	22.7%	-
Tension Load:	27.80 (kips)	AT 125	Shrinkage Device (1-1/4" I.D.) - Allowable Load	34.50	11.80	34.2%	-
Compression:	27.80 (kips)	-	Shrinkage Device - Deflection at Load	-	-	-	0.005
Story Height:	10.00 (ft.)	-	Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	8.95 (ft.)	S12L	Bearing Plate at Reaction Point	12.05	11.80	97.9%	0.039
Floor Depth:	12.63 (in.)	R9B7	1 1/8"-B7 Tension Rod	46.59	27.80	59.7%	0.151
		Limitir	ng Component Tension Load Capacity, Load and D/C Ratio	12.05	11.80	97.9%	-
		Maximum Allow	red Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	98.7%	0.197
Level =	Footing	Component	Description	Capacity	Demand	D/C	Elong.
Tension Load:	27.80 (kips)	R9B7	1 1/8"-B7 Anchor Rod	46.59	27.80	59.7%	n/a

Base Design Code: Steel Stess Increase: Takeup Device at Each Level: Elongation Limit Required: Elongation Limit per Connection: Elongation Components: Shrinkage:

- IBC_2009/2009 per the State and Local jurisdiction
 - No
 - Yes
 - Yes

 - (inch) between load reaction points (Typical Range 0.125 to 0.200) 0.200
- System Stretch
 - 0.250 inch per floor (Typical Range 0.250 to 0.500) DFL
- Shearwall Plates Wood Species:
- Douglas Fir-Larch

Shearwall Plates Wood Strength: 625 psi

www.comminsmfg.com

AutoTight® System Run Design Calc. Sheet for:

The Sample Project

Rev 0 Date 12/10/2010

тм

5 ,						2410 .2/1		
Project Number:						CAT ID #	75-1984	6
Run Name:	3A	Run Qty:	5		Te	nsile Stren	gth	Calc'd
Run Specif	ications	Comp	onent	Description	Capacity	Demand	D/C	Elong.
Required I	_oads:	Commins	AutoTight		(kips)	(kips)	Ratio	(in.)
Level =	4th	Comp	onent	Description	Capacity	Demand	D/C	Elong.
Differential Load:	8.50 (kips)	AT6A	A-1.5	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.50"	0.75"	50.0%	-
Tension Load:	4.50 (kips)	AT6A	A-1.5	Shrinkage Device - 1.5" (3/4" I.D.) - Allowable Load	13.58	8.50	62.6%	-
Compression:	4.50 (kips)			Shrinkage Device - Deflection at Load	-	-	-	0.009
Story Height:	10.00 (ft.)	- 1		Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	8.95 (ft.)	S1	0	Bearing Plate at Reaction Point	10.32	8.50	82.3%	0.033
Floor Depth:	12.63 (in.)	R6A	307	3/4"-A307 Tension Rod	9.94	4.50	45.3%	0.199
			Limiti	ng Component Tension Load Capacity, Load and D/C Ratio	10.32	8.50	82.3%	-
		Maxim	num Allov	ved Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	121.5%	0.243
	a 1	-			a		5/0	
Level =	3rd	Comp	onent	Description	Capacity	Demand	D/C	Elong.
Differential Load:	0.00 (kips)	C)	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	#N/A	0.50"	#N/A	-
Tension Load:	8.50 (kips)	C)	No Shrinkage Device - Reaction & Elongation on floor above	#N/A	0.00	0.0%	-
Compression:	8.50 (kips)	-		Shrinkage Device - Deflection at Load	-	-	-	n/a
Story Height:	10.00 (ft.)	-		Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	n/a
Plate Height:	8.95 (ft.)	-		Bearing Plate at Reaction Point	#N/A	0.00	0.0%	0.002
Floor Depth:	12.63 (in.)	R6A	307	3/4"-A307 Tension Rod	9.94	8.50	85.5%	0.000
			Limiti	ng Component Tension Load Capacity, Load and D/C Ratio	9.94	8.50	85.5%	
		Maxim	num Allov	ved Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	1.0%	0.002
Level =	2nd	Comp	onent	Description	Capacity	Demand	D/C	Elona.
Differential Load:	7.50 (kips)	AT	100	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.10"	0.25"	22.7%	-
Tension Load:	16.00 (kips)	AT	100	Shrinkage Device (1" I.D.) - Allowable Load	25.30	7.50	29.6%	-
Compression:	16.00 (kips)	-		Shrinkage Device - Deflection at Load	-	-	-	0.009
Story Height:	10.00 (ft.)	-		Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	8.95 (ft.)	S	8	Bearing Plate at Reaction Point	8.28	7.50	90.6%	0.036
Floor Depth:	12.63 (in.)	R8A	307	1 "-A307 Tension Rod	17.67	16.00	90.5%	0.109
			Limiti	ng Component Tension Load Capacity, Load and D/C Ratio	8.28	7.50	90.6%	-
		Maxim	num Allov	ved Level Elongation, D/C Ratio and Total Level Elongation	0.200	-	78.5%	0.157
						_		
Level =	Footing	Comp	onent	Description	Capacity	Demand	D/C	Elong.
Tension Load:	16.00 (kips)	R8A	307	11 "-A307 Anchor Rod	17.67	16.00	90.5%	n/a

Steel Stess Increase: Takeup Device at Each Level: Elongation Limit Required: Elongation Limit per Connection: Elongation Components: Shrinkage: Shearwall Plates Wood Species:

Base Design Code: IBC_2009/2009 per the State and Local jurisdiction

No Yes

Yes

0.200 (inch) between load reaction points (Typical Range 0.125 to 0.200)

System Stretch

0.250 inch per floor (Typical Range 0.250 to 0.500) Douglas Fir-Larch

DFL

Shearwall Plates Wood Strength: 625 psi

www.comminsmfg.com

Yes

AutoTight® System Run Design Calc. Sheet for:

The Sample Project

Rev 0 Date 12/10/2010

тм

		r						
Project Number:						CAT ID #	75-1984	6
Run Name:	1ASBS	Run Qty:	4		Tensile Strength		gth	Calc'd
Run Specifications		Component		Description	Capacity	Demand	D/C	Elong.
Required Loads:		Commins AutoTight				(kips)	Ratio	(in.)
Level = 3rd		Component		Description	Capacity	Demand	D/C	Elong.
Differential Load:	8.20 (kips)	AT6A	\-1.5	Shrinkage at Level, Shrinkage Device travel & D/C Ratio (in.)	1.50"	0.50"	33.3%	-
Tension Load:	8.20 (kips)	AT6A-1.5		Shrinkage Device - 1.5" (3/4" I.D.) - Allowable Load	13.58	8.20	60.4%	-
Compression:	8.20 (kips)	-		Shrinkage Device - Deflection at Load	-	-	-	0.008
Story Height:	10.00 (ft.)	-		Shrinkage Device - Travel and Seating Increment ΔR	-	-	-	0.002
Plate Height:	8.95 (ft.)	S8		Bearing Plate at Reaction Point	8.28	8.20	99.0%	0.002
Floor Depth:	12.63 (in.)	R6A	307	3/4"-A307 Tension Rod	9.94	8.20	82.5%	0.091
		Stl B	eam	Steel Beam Start in Tension	9.94	8.20	82.5%	0.000 (3)
	Limiting Component Tension Load Capacity, Load and D/C Ratio					8.20	99.0%	-
		0.200	-	51.6%	0.103			

Base Design Code: IBC_2009/2009 per the State and Local jurisdiction teel Stess Increase: No

Steel Stess Increase: Takeup Device at Each Level: Elongation Limit Required: Elongation Limit per Connection: Elongation Components: Shrinkage: Shearwall Plates Wood Species:

 Yes

 0.200 (inch) between load reaction points (Typical Range 0.125 to 0.200)

 System Stretch

 0.250 inch per floor (Typical Range 0.250 to 0.500)

 DFL
 Douglas Fir-Larch

 Shearwall Plates Wood Strength:
 625 psi

1 AutoTight Rod Holdown System Notes	2 Threaded Rod and AT Take-Up Device Allowable Loads	3 Bearing Plate Schedule and Allowable Loads	4 Typ. A. B Post Layout	6 Typ. Anchor Bolt Coupler	-
Comparison profile and big for the provide the design of the design	Total and find and find the data of points and points in the data of the data o	Table 2a Table 2a Distribute Building Coste BC Baseing Piler Alexate Loads (13) EL 480, 2016 BC Baseing Piler Alexate Loads Pilet Center Alexate Loads Vitem Tength Cent step "vigit 84 316 2 12 2 12 34 5007 85 016 3 14 4 5007 5007 5007 93 012 5 6 1 1222 507 6 1 1222 507 512 512 53 6 1 1222 134 5007 1 13665 514 34 7 1 13665 1 1622 1 1226 1 13665 1 1622 1 1266 1 13665 1 1625 1 13665 1 1625 1 1625 1 1625 1 1625 1 1625 1 1626 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625 1 1625			e Project. 1 of 1, 12/09/2010 WIN System Insmifg.com Interburing, Inc. 2y Harbor, WA 98250 F: 360.378.9485
 Comparing participation by participation of the large grade. In <i>Prod. A spread after the large large and the large lar</i>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Arote bil bedil Nex. Arote bil bedil Nex. Arote bil bedil Nex. Arote bil setti picely if don to contrib als di aroten decode don to model of 1-1/27 b Arote bil setti picely if how the contribution of believe and did to arote the model of believe to be add and did to arote the believe to be add and the setting of the trade model in the contribu- tion of the setting of the trade to arote of if the d contract. Arote Coupler Nuts	sampl cotight Holdo www.commins Ma 960B Guard St., Frid 1: 360.378.9484
Control of Control Marchane Sector In Forms All A	Arrow Z String Control Contro Contro Control </th <th>S35 10 34.154 S39 110 356,527 44 20 42,504 120 55 512 121 7 5 123 34 5 124 5 7 125 34 5 126 5 9 120 1 512 123 1 5 120 1 512 123 5 11 33,529 5</th> <th>A Compression Poet</th> <th></th> <th>NA NAFT</th>	S35 10 34.154 S39 110 356,527 44 20 42,504 120 55 512 121 7 5 123 34 5 124 5 7 125 34 5 126 5 9 120 1 512 123 1 5 120 1 512 123 5 11 33,529 5	A Compression Poet		NA NAFT
Mare: Monitorian Mare: Ma	Def regis freed freed for the state is well and the minimum free freed for the free state. Jai Provider regis in behaviors freed for comer (Free freed). Jai Provider regis in behaviors freed for comer (Free freed). Jai Provider register is a behaviors freed for comer (Free freed). Jai Provider register is a behaviors freed for comer (Free freed). Jai Provider register is a strate freed for comer (Free freed). Jai Provider register is a strate freed for comer (Free freed). Jai Provider register is a strate freed for comer (Free freed). Jai Provider register is a strate freed for comer (Free freed). Jai Provider register is a strate freed for the strategister is a strate freed for the strategister is a strate freed for the strategister is a strategister in the strategister is a strategister in the strategister is a strategister in the strategister is a strategister is a strategister in the strategister is a strategister is a strategister in the strategister is a strategister is a strategister in the strategister is a strategister in the strategister is a strategister in the strategister is a strategister i	 Table bordy prior actual none: The bordy prior within 355 and 255 an	All the second bias (AL) increase the second product branch and the second bias (AL) increase the second product (Date)	Here is the second seco	-Correr-Souders, Inc. Dated
8 Comp. Post Nailing 9 Comp. Post Nailing 2x and 3x Compression Post 4x and larger Compressio	be / 21. Thirdner bered to fund a flag and	12 Typ. Take-Up Device Install 13 Allowable Rod Offset	14 Wood Beam Start (WBS)	15 Steel Beam Start (SBS)	to calculations prepared by Zbinder No Revision
Compression Part (2x ord 3x) Noise: 1. All full height sc ord 3x compression poets abilities and speerd affilten Aside & 12° 0.C. compression for example of the red, the scheme is the Sherred's Schedule on each compression poet on each de fiel the red, the scheme is the Sherred's Schedule on each compression poet with the scheme at the scheme is the scheme at the scheme	when he hadron when he hadron	All of the Theorem All of theore	Notes that Deduce Notes that the balance I work is built of the set I. Work is and the set I. Work is and the set I. Work is and the set I. Work is a set of components are par Holdown Run Eleveritors AT.I.1. I. Work is a set of the set In the set of the set of the set of the set In the set of the set In the set of the se	Steel Beam Stort Notes: 1. Skel beam stort components are per Holdown Ren Elevations 47.1. Skel beam dent therefore red is elevator Ren Elevations 47.1. Skel beam dent therefore red is elevator Elevations 47.1. Charles and the strength calculations have been Elevations 47.1. Charles and the strength calculations.	sec tct 98250 - Na Date: 12/09/10
Mid-Floor Termination Plate to barke Mid-Book States to barket Mide Floor Termination Plate to barket Termination Ter	Atom to hadre the second secon				mins Manufecturing Inc. 75–19846 The Sample Proje 960 Guard Street 960 Guard Street 761 A Harbor WA
Alternatis Run Tarmination Notes: 1. Batter to addall 11 for typical meader installation; 2. Batter to addall 11 for typical meader installation; 3. Run terminations had are and mini-floor may require the threaded rad to be cut. Clearance advance the sign of the rad must be greater than word athrheage per floor (detail 1, note 3) 4. Change of the meader may be greater than word athrheage per floor (detail 1, note 3) 4. Change of the meaders may be floor than the sign of a dargened more that anison. 5. Batter devenues has about the 1/2" entrated. 5. To prior themation. Simil hir parties within 12" or of a dargened more 16d aikans 4" 0.C.	Floor Blocking Holes: 1. All floor blocking shall have 1/2 ⁴ vertical determines behave said picture vertical. determines behave said picture vertical. 3. Portions may be subditived for said some vertical. Bioching must endrib compression por behave or be said blocked when under a bearing picts. Red determine have for red shall be and all as plan 1/4' = 1/2' oversized. Not must move freely frough holes when causardy.			-	Details Details AT10

